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A two-liquid form of the marker-cell method is used to examine the displacement 
of a liquid from a channel with a rectangular recess. 

The usual finite-difference methods cannot be applied to numerical simulation for 
processes in which one liquid displaces another. The difficulties occur because the density 
and viscosity at any point are not known in advance and vary as the flow develops on account 
of the mutual penetration of the liquids. 

These difficulties can be overcome in the two-liquid form of the marker-cell method [i- 
3], which operates with Lagrangian particles (markers), which move through the cells of a net 
specified in space. The markers play two roles: they indicate the regions of space occupied 
by each liquid and they also define the density and viscosity in the cells (from the propor- 
tions of markers of different types). 

Here the marker-cell method is used to examine the displacement of a liquid from a chan- 
nel with a rectangular recess. This has many practical applications, such as the weathering 
of salt or coal mines, cementation in oil and gas wells, etc. 

We consider the formulation. We assume that in the initial state a channel with a re- 
cess is filled with a steadily moving homogeneous liquid, while another liquid begins to be 
pumped into the inlet at the initial instant. The two liquids are assumed to be viscous, 
Newtonian, and incompressible, while the flow is planar. 

Figure 1 shows the form of the working region and the coordinate axes. The boundaries 
AH, BC, CD, DE, EF, and FG are solid. The inlet and outlet sections lie reasonably far from 
the depression, so the velocity distribution in them can be considered as plane-parallel. 

The system of equations defining the flow of a mixture of two viscous incompressible 
liquids differing in density and viscosity is written by the marker-cell method as equations 
for a homogeneous medium of variable density and viscosity, The two-component nature of the 
system is reflected in the way the viscosity and density are calculated from the relative con- 
tents of the different types of markers. There is then no need to write the equation for the 
concentration. The equations have the following form for planar flow: 
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w h e r e  p and  ~ a r e  t h e  d i m e n s i o n l e s s  d e n s i t y  a nd  d y n a m i c  v i s c o s i t y ,  w h i c h  a r e  d e f i n e d  a s  t h e  
ratios of the dimensional density and viscosity to p: and ~. Here and subsequently, sub- 
script 1 denotes the characteristics of the displaced liquid, while subscript 2 denotes the 
displacing one. The units of measurement for length, velocity, time, and pressure are re- 
spectively the half-width of the channel h, the mean pumping speed Uo, and the quantities 

U 2 h/Uo and 0: o. The Reynolds number is defined by the mean pumping speed and the characteris- 
tics of the first liquid Re = Uohp:/~. 
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Along with the incompressibility condition (3), we must have a zero value for the 
Lagrangian derivative of the density with respect to time dp/dt = 0 in order to ensure the 
conservation of mass. This relation does not appear in the system of equations, since obe- 
dience to it is provided directly in the computation. 

The calculation from (1)-(3) consists of two stages. In the first stage, the differ- 
ence method gives a solution to the equations corresponding to the steady-state flow of a 
homogeneous liquid. The boundary conditions are then as follows: 

u = v = 0 on BC, CD, DE, EF, FO ~ AH, (4)  

3 
u =  - - y ( 2 - - y ) ,  v = O  o n A B  aGH,  

2 (5)  

p = 0  on AB, (6)  

Op __ 3 on GH. 
ax Re (7) 

I n  t h e  s e c o n d  s t a g e  one  c o n s i d e r s  t h e  f l o w  o f  a s y s t e m  o f  two l i q u i d s ,  w h i c h  b e g i n s  a f -  
t e r  we h a v e  o b t a i n e d  a s t e a d y - s t a t e  f l o w  f o r  a h o m o g e n e o u s  l i q u i d  and  i n v o l v e s  c a l c u l a t i n g  
not only the distributions of u, v, and p but also the density and viscosity at each point, 
which is performed by means of marker movements. The boundary conditions (4)-(6) are used 
in the previous form, with the addition of conditions for the density and viscosity: 

ap _ 0  o n B C ,  CD, DE, EF, FO, 
On (8 )  

w h e r e  n i s  t h e  n o r m a l  t o  t h e  b o u n d a r y ,  and  

p P~ ~2 - -  , ~ = - - -  on AB, 
Pt ~t (9) 

where condition (7) ceases to be obeyed when the displacing liquid reaches the output sec- 
tion. The pressure and the values of p and ~ at the outlet are not specified but are com- 
puted in the process. The corresponding formulas and the boundary conditions for the pres- 
sure at the solid walls will be considered below in the difference implementation. 

A divergent difference scheme was used to solve (1)-(3), in which the conservation laws 
were obeyed for each cell in the rectangular net. The horizontal and vertical components of 
the velocity were determined at the middles of the vertical and horizontal sides of the cell 
respectively, while the scalar quantities were related to the centers of the cells in order 
to write the divergent difference relations (Fig. i). 

We write the finite-difference analog of (1)-(3), where i and j enumerate the vertical 
and horizontal coordinate lines passing through the centers of the cells (Fig. i), while n is 
the number of the time cycle and ht is the time step: 
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n n Here  Q i + ~ / a . j ,  S i , j + l / a  a r e  e x p r e s s e d  b y  t h e  v a l u e s  o f  t h e  v a r i a b l e s  u ,  v ,  p ,  a n d  ~ i n  t i m e  
layer n, while the full form of the finite-difference formulas can be found in [3]. 

J 

Substitution of the u n+* and v n+* calculated from (i0) and (11) into (12) gives an 
equation of Poisson type for the pressure, which may be solved by Liebman's iterative method 
with sequential upper relaxation. 

The boundary conditions for the difference equations are formulated by means of an 
additional (fictitious) series of cells outside the boundaries of the working region. We 
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Fig. I. Working region. 

choose the values of p, ~, u, v, p in these cells appropriately to meet the boundary condi- 
tions and at the same time to provide scope for calculating all the points in the region (in- 
cluding those adjoining the boundary). We consider the corresponding formulas only for cells 
adjoining the inlet and outlet sections (the formulas for the solid boundaries are discussed 
in [1-3]). 

The equations for the inlet section AB take the form 

Vo,i+112 = - -  v l  , i + l  / 2, ( 1 3 )  

u - l / 2 , i  = u312, i ,  ( 1 4 )  

P o , i =  2 p2 - - p l , i ,  
o, (15) 

H o , i = 2  H_~_2 _F1,j, 
Vi (16) 

Po,i = - -  P l , j "  ( i 7 )  

Equation (13) follows from the second condition in (5), while to obtain (14) we use (5) 
and the equation of continuity, and (15) and (16) follow from (9), while (17) means that the 
pressure on the line AB is taken as the origin. 

At the fictitious nodes adjoining the outlet section GH, we calculate the values of p, 
p, and ~ from the values at some internal nodes via interpolation formulas analogous to those 
used in [4]. For example, for the density 

O k + l , /  = Ps (18) 

Here k is the number of the internal vertical row of cells adjoining GH. 

Calculations on the flow of a homogeneous liquid involve calculating the fields of u and 
v from (i0)-(ii) and conditions of the type of (13) and (14), together with determination of 
the pressure field by an iterative method by use of the boundary conditions. The density and 
viscosity fields appearing in the formulas remain constant: at all points Pi,j = ~i,j = i. 

In calculating the flow of the two-liquid system, we introduce markers moving against 
the background of the immobile net and serving to determine the density and viscosity fields. 

Each cycle of computation involves passing from time layer n to layer n + i, and it be- 
gins with known values for the density, viscosity, and two velocity components, as well as 
known values for the marker coordinates. 

The computations involve determining the pressure field (iterative solution of Poisson's 
equation), calculation of the velocity fields from (i0) and (ii), and determination of the 
new coordinates of the markers from 

x =  x n + A t u n +  ~, y = y n + A t v ~ +  ~ 

(the speeds of the markers are found by interpolation), and calculation of the density and 
viscosity in each cell from the formulas 

pint + 9~N~ ~lNi + ~N~ 
Nt +N~ Ni -F N~ 

where Nx is the number of markers in a cell representing the first liquid and N2 is the num- 
ber of markers in a cell representing the second. 
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Fig. 2. Stages in the displacement (tl = 0.694 (a), t2 = 
2.083 (b), t3 = 3.473 (c), and t~ = 6.944 (d)) for Re = i, 
P2/Pl = i, ~2/~: = 2. 

This entire set of calculations is only one step in the iterative process needed to ad- 
just the density and marker-displacement fields (to satisfy the condition dp/dt = 0) [4]. 

At each step in this process, the newly determined densities are compared with pn, which 
are used in calculating the pressures and velocities, and the displacements of the markers 
are considered untrue if it is found that the newly calculated density distribution does not 
coincide with the field of pn. Then the markers are returned to the initial positions, but 
the densities pn and the other characteristics of the liquid are replaced by the newly com- 
puted values, and one again calculates the velocities and paths of the markers. This process 
is continued until the newly calculated density field agrees (within a specified accuracy) 
with the field of p used in calculating the pressures and velocities. Then the new positions 
for the markers and the fields for all quantities are considered to be true (for time step 
n + i), and the cycle is completed. 

Stability in the calculation is ensured by choosing the time step as follows: 

At = (Ax)~(Ay)~ 
4 [(Ax)~ + (AV)~I 

3. The following are some results. It is found that the displacement at low Reynolds 
numbers is different from that at high ones. At low values of Re, the front of the displacing 
liquid has a shape such that the displacement occurs primarily at the leading edge of the re- 
cess. Figure 2 gives an example of this case, where we show some stages in the displacement 
for Re = i, P2/Pl = i, ~2/~: = 2. At t = 0, the working region is filled only by markers for 
the displaced liquid (shown by circles on the figure), while at subsequent instants markers 
for the displacing liquid (points) begin to appear. The calculations involved more markers 
than are shown in the figures (we have printed only the coordinates of a quarter of the 
markers). At high Reynolds numbers, the displacing liquid first fills the central channel, 
and at this stage the markers for that liquid hardly penetrate into the recess. 

Therefore, the displacement is performed more effectively at low Reynolds numbers. This 
is confirmed by experimental data [5], which show that less time is required to replace the 
contents of a recess at low Reynolds numbers. 

The calculations wer e performed with various values for the ratios of the densities and 
viscosities, which showed that the performance in displacement is dependent primarily on the 
density ratio. If there is a large difference in the densities, the markers for the displac- 
ing liquid enter the recess even at fairly high Reynolds numbers. A similar effect has been 
observed in experiments [5]. 
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Calculations were also performed for liquids of identical density (p2/p~ = i] with vari- 
ous relations between the viscosities (Z2/B~ = i, ~2/~I = 2, Z2/Z1 = 4), which showed that 
the degree of displacement even for Re = 1 is almost independent of the viscosity ratio. 

NOTATION 

x,y, Cartesian coordinates; t, time; u,v, velocity components; p, pressure; h, channel 
half-width; Vo, mean pumping rate; Re, Reynolds number; Ax,Ay, net steps; Ni, number of 
markers in a cell. 
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STRUCTURE OF A TWO-PHASE EDGE WAKE 

P. V. Khrabrov, V. A. Khaimov, and G. S. Shvartsman UDC 532.62 

Experimental results are presented on the structural and kinematic characteristics 
of the motion of a liquid in an edge wake. 

The resistance law for a truncated sphere is used in calculating a two-phase edge wake, 
e.g., as in wet-steam turbine stages. Extensive evidence has been accumulated on the motion 
of individual droplets, and this allows one to incorporate the effects of various factors on 
the resistance coefficients, such as the nonstationary and turbulent nature of the carrying 
flow, the internal circulation of the droplets, the deformation, etc. At the same time, it 
remains unclear how far these results are applicable to the motion of droplets in an edge 
wake with high concentration and velocity gradients. As a consequence, it appears preferable 
to use the critical Weber numbers, which characterize the stability of droplets of maximum 
size, and the effects from droplet interaction on the structure of the edge wake. 

There are serious difficulties in measuring the local structural and kinematic parame- 
ters of a high-speed droplet flow and determining whether one is justified in transferring 
the laws of motion of single drops to the conditions of an edge wake. 

Here we examine some aspects of this problem. We have developed a statistical method 
of high-speed photography. The essence is a follows. We represent a droplet of diameter d 
moving with velocity c T in the median plane of the focal range of a camera (Fig. I). The 
camera is fitted with a scan system, and the axis of rotation of the mirror is parallel to 
the direction of droplet motion. The image of the droplet in the appropriate scale is con- 
structed by the input optical system 1 in the plane of the slot 2, which is conjugate to the 
axis of rotation of the mirror. Then part of the droplet image cut off by slot 2 is trans- 
ferred by the lens 3 and the rotating mirror 4 to the film 5. During the exposure, the 
image of the drop at the film moves along the line AB, whose width along the slot is deter- 
mined by the size of the droplet, while the angle ~ is determined by the ratio of the scan 
speed (line AC) and the speed of the droplet on the appropriate scale (line CB). If the 
slot width is sufficiently small and a collimated beam is employed, which lies at the opti- 
cal axis of the camera, the error in imaging the droplet as a sphere is small~and may be 
neglected. The optimum mutual disposition of the slot and the droplet image occurs when 
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